Cation-exchange Membrane
   HOME

TheInfoList



OR:

An ion-exchange membrane is a
semi-permeable membrane Semipermeable membrane is a type of biological or synthetic, polymeric membrane that will allow certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecule ...
that transports certain dissolved ions, while blocking other ions or neutral molecules. Ion-exchange membranes are therefore electrically conductive. They are often used in desalination and chemical recovery applications, moving ions from one solution to another with little passage of water. Important examples of ion-exchange membranes include the proton-exchange membranes, that transport
cations An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by con ...
, and the
anion exchange membrane An anion exchange membrane (AEM) is a semipermeable membrane generally made from ionomers and designed to conduct anions but reject gases such as oxygen or hydrogen. Applications Anion exchange membranes are used in electrolytic cells and fuel ...
s used in certain alkaline fuel cells to transport
anions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
.


Structure and composition

An ion-exchange membrane is generally made of organic or
inorganic In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemist ...
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
with charged (ionic) side groups, such as
ion-exchange resin An ion-exchange resin or ion-exchange polymer is a resin or polymer that acts as a medium for ion exchange. It is an insoluble matrix (or support structure) normally in the form of small (0.25–1.43 mm radius) microbeads, usually white or ye ...
s. Anion-exchange membranes contain fixed cationic groups with predominantly mobile anions; because anions are the majority species, most of the conductivity is due to anion transport. The reverse holds for cation-exchange membranes. The so-called heterogeneous ion-exchange membranes have low cost and a thicker composition with higher resistance and a rough surface that can be subject to fouling. Homogeneous membranes are more expensive, but have a thinner composition with lower resistance and a smooth surface, less susceptible to fouling. Homogeneous membrane surfaces can be modified to alter the membrane permselectivity to protons, monovalent ions, and divalent ions.


Selectivity

The selectivity of an ion-exchange membrane is due to Donnan equilibrium and not due to physically blocking or electrostatically excluding specific charged species. The selectivity to the transport of ions of opposite charges is called its permselectivity.


Applications

Ion-exchange membranes are traditionally used in
electrodialysis Electrodialysis (ED) is used to transport salt ions from one solution through ion-exchange membranes to another solution under the influence of an applied electric potential difference. This is done in a configuration called an electrodialysis ...
or diffusion dialysis by means of an electrical potential or concentration gradient, respectively, to selectively transport cationic and anionic species. When applied in an electrodialysis desalination process, anion- and cation-exchange membranes are typically arranged in an alternating pattern between two electrodes (an anode and a cathode) within the electrodialysis stack. A galvanic potential is supplied as a voltage generated at the electrodes. A typical industrial electrodialysis stack consists of two chambers: a product-water chamber and a concentrate-reject chamber. During stack operation, salts are transferred from the product to the concentrate. As a result, the reject stream is concentrated up while the product stream is desalted. Exemplary applications of ion-exchange membranes utilized in electrodialysis and EDR include seawater desalination, industrial wastewater treatment of highly scaling waters, food and beverage production, and other industrial wastewaters.


References

{{reflist


See also

* Proton-exchange membrane Laboratory techniques Analytical chemistry